3x^2+(2m+3)x-5=0

Simple and best practice solution for 3x^2+(2m+3)x-5=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+(2m+3)x-5=0 equation:


Simplifying
3x2 + (2m + 3) * x + -5 = 0

Reorder the terms:
3x2 + (3 + 2m) * x + -5 = 0

Reorder the terms for easier multiplication:
3x2 + x(3 + 2m) + -5 = 0
3x2 + (3 * x + 2m * x) + -5 = 0

Reorder the terms:
3x2 + (2mx + 3x) + -5 = 0
3x2 + (2mx + 3x) + -5 = 0

Reorder the terms:
-5 + 2mx + 3x + 3x2 = 0

Solving
-5 + 2mx + 3x + 3x2 = 0

Solving for variable 'm'.

Move all terms containing m to the left, all other terms to the right.

Add '5' to each side of the equation.
-5 + 2mx + 3x + 5 + 3x2 = 0 + 5

Reorder the terms:
-5 + 5 + 2mx + 3x + 3x2 = 0 + 5

Combine like terms: -5 + 5 = 0
0 + 2mx + 3x + 3x2 = 0 + 5
2mx + 3x + 3x2 = 0 + 5

Combine like terms: 0 + 5 = 5
2mx + 3x + 3x2 = 5

Add '-3x' to each side of the equation.
2mx + 3x + -3x + 3x2 = 5 + -3x

Combine like terms: 3x + -3x = 0
2mx + 0 + 3x2 = 5 + -3x
2mx + 3x2 = 5 + -3x

Add '-3x2' to each side of the equation.
2mx + 3x2 + -3x2 = 5 + -3x + -3x2

Combine like terms: 3x2 + -3x2 = 0
2mx + 0 = 5 + -3x + -3x2
2mx = 5 + -3x + -3x2

Divide each side by '2x'.
m = 2.5x-1 + -1.5 + -1.5x

Simplifying
m = 2.5x-1 + -1.5 + -1.5x

Reorder the terms:
m = -1.5 + 2.5x-1 + -1.5x

See similar equations:

| c-2=-8 | | 4x+6y=325 | | -27x=-6 | | 7r+2=6+3r | | -3=y-15 | | x^4+6x^3+8x^2-6x-9=0 | | 0.75g=6 | | x-4=-15 | | 0.75=6 | | -7-2x=4x+11 | | 16=t-4 | | 0.50g=10 | | -19=b-1 | | 7x+3=4x-15 | | 10-4x=7x-23 | | 21=n-6 | | -6y=2y+96 | | 4y-9(43+7y)=26 | | k-20=10 | | 8x+5=3x+15 | | 14a=5-2a | | 5(1+6x)+7-5x=112 | | 2x^2-5x=7 | | (x-3)(4x+7)=0 | | X-7y=43 | | 25x-4(4x+6)=-69 | | f+0.8=2 | | 17-7x+3=-3x+21-3x | | -6d=-24 | | 4x+10+7(2x-1)=183 | | -2x+20x=-18 | | 3(x+12)-x=8 |

Equations solver categories